ANITA: Searching for Neutrinos at the Energy Frontier

Steve Barwick, UC Irvine

APS Meeting, Philadelphia, April 2003

4/22/03
The energy frontier has traditionally led to tremendous breakthroughs in our understanding of how the universe operates — We hope to exploit that very same technique
EeV (10^{18} eV) Science Goals

- **GZK from p+\gamma_{\text{CMB}}**
 - Detection would confirm highest energy cosmic rays are extragalactic and composed of ordinary stuff like protons, helium
 - Provides neutrinos to study predictions of Grand Unified Models, the Holy Grail of Particle Physics
 - Non-detection would be great surprise

- **Supermassive Black Hole/ AGN models**
 - Compared to searches at 1-100 TeV, probes a complementary set of models
 - Salamon and Stecker (‘95), Protheroe(‘97), Mannheim(‘95), Halzen and Zas(‘97)

- **Exotic sources - physics of the early Universe**
 - Topological defects, Heavy Boson decay, Z-burst, micro-Blackholes
GZK Mechanism

• Two predictions
 – 1. There is a brick wall for the highest energy cosmic rays. We should observe energies below about 10^{20} eV.

 – 2. The reactions that limit the cosmic ray energies produce neutrinos as a by-product

GZK neutrinos are probably the 2nd most likely source of high energy neutrinos!
GZK neutrinos are a “guaranteed” source

- Ultra-high energy cosmic rays:
 - From where??! And How??

- Standard Model:
 - Ordinary charged particles
 accelerated by distant sources: AGN, GRBs…

- If so: GZK neutrinos are the signature
 - Probably necessary and sufficient
to confirm standard GZK model

4/22/03
GZK cutoff may be observed - or not

ANITA
GZK neutrinos probe new physics

Cross-section a factor of 100 larger in μ-BH models

\[\sigma (\text{mb}) \]

E_ν (TeV)

μ-Black Holes

Strings

Standard Model
What role does radio detection play?

- Standard model GZK ν flux: <1 per km2 per day
 - Only 1 in 500 interact in ice

Both AMANDA-II or cubic kilometer array may expect to see 1 event every 2 years in its fiducial volume—requires astronomical level of patience.

- How can we get the \sim100-1000 km3 sr yr exposures needed to detect GZK neutrinos at an acceptable rate?

Answer: radio Cherenkov emission

 • economy of scale very competitive
Why is Antarctic Ice so good?

• It does not absorb radio very much - the cold temps help a lot
 – Absorption length = 1000m vs 100m for light
 – Negligible scattering in radio

• There is little unwanted interference from man-made transmitters at balloon altitudes and trajectories

• It preserves linear polarization of Cherenkov light

• There is a lot of it!
Radio Cherenkov has been observed! (2000)

- Use 3.6 tons of sand

From Saltzberg, Gorham, Walz et al PRL 2001

4/22/03
New results—SLAC T460 June 2002

Follow up experiment to SLAC T444, with rock-salt target

- Much wider energy range covered:
 - <1PeV up to 10 EeV
- Radio Cherenkov observed over 8 orders of magnitude in radio pulse power
Shower profile observed by radio (~2GHz)

- Measured pulse field strengths follow shower profile very closely
- Charge excess also closely correlated to shower profile (EGS simulation)
- Polarization completely consistent with Cherenkov—can track particle source

4/22/03
ANITA
ANtarctic Impulsive Transient Antenna

S. Barwick (UCI), J. Beatty (PSU), J. Clem (Bartol), S. Coutu, D. Cowen (PSU), M. DuVernois (U Minn.), P. Evenson (Bartol), P. Gorham (Hawaii), K. Liewer (JPL), D. Saltzberg (UCLA), D. Seckel (Bartol), G. Varner (U Hawaii), K. Woschnagg (UCB)

Collaborators:

D. Besson (U Kansas), F. Halzen (Wisconsin), D. Kieda (Utah), J. Learned, S. Matsuno (UH)

Red= worked at pole
ANtarctic Impulsive Transient Antenna

- NASA funding starts 2003
- launch in 2006

600 km radius, 1.1 million km²
ANITA concept

cascade produces UHF–microwave EMP

antenna array on payload

0.1–100 EeV neutrinos

touched RF

ice

cascade

56° Cherenkov cone

1–3 km
ANITA antennas view ~2pi sr with 60 deg overlapping beams

Beam intensity gradient, timing interferometry, and polarimetry used to determine pulse direction & thus original neutrino track orientation
RadarSat completed comprehensive SAR map of Antarctica in late 1990s—feature resolutions of ~10-50m, available public domain

- Can calibrate surface roughness—SAR $\lambda = 5.6$ cm

4/22/03
Ice transparency

Loss tangent a strong function of temperature

For cold ice, UHF (0.1-1GHz) best

Antarctic data approaches pure ice values

L_\alpha = \lambda \left[\pi n \left(\varepsilon''/\varepsilon' \right) \right]^{-1} \sim 6 \text{ km at } 300 \text{ MHz } \& -60^\circ\text{C (pure ice)}
Existing Neutrino Limits and Potential Sensitivity

- **RICE, AGASA, Fly’s Eye**
 - limits for ν_e only

- **GLUE limits ν_μ & ν_e**
 - ~80 hours livetime
 - Goal: 300 hrs over next 3 years

- **SALSA & ANITA**
 - sensitivity:
 - Based on 2 independent Monte Carlo simulations

Models:
- Topological Defects: Sigl; Protheroe et al.; Yoshida et al.
- AGN: Protheroe et al.; Mannheim
- GZK neutrinos: Engel et al. ‘01
RFI Noise Tests at South Pole

- Ambient noise on the high plateau

Log-Periodic Antenna
Initial Results from Polar Studies

- It looks good so far

Nadir–Zenith noise, 1/26/03 South Pole ski hut at 6km

RF emission from ice

4/22/03

Polarization 1
Polarization 2
What’s Next? ANITA-lite in 03/04

Piggy-back mission on TIGER payload

Goals: survey RFI at balloon altitudes

Solar Panels

250 lb
250 W

2 Antenna

4/22/03
ANITA questions & issues

• RF interference?
 – Studies suggest Antarctica is extremely quiet
 – Measure this year with a piggy-back mission

• How will cascade pulses be distinguished?
 – Precise pulse shape
 – Located in the ice
 – Must show linear polarization

• Energy & Angular resolution?
 – Angular resolution: zenith~2°
 – Depth of collision from shape distortion & known ice properties
 – $\Delta E/E \sim 1$ from combination of all of the above
Why is ANITA a good idea?

- Frontier Science and very exciting
 - Win-win with GZK neutrinos
- Scans ice over 600km radius, and enormous detector volume!
- Radio signal can be calculated precisely and has been measured at high energy lab - unique signature!
- Energy resolution is relatively good
- Antenna can be absolutely calibrated by man-made radio transmitter embedded in deep hole (e.g., Vostok)

- Balloon flight path is far from sources of confusing background

Revolutionary concept in EHE neutrino detection!
Future plans

- Goal: 15-30 day first flight, solid constraints (or detection) of GZK flux
- More stringent constraints on other models:
 - TeV scale black holes, AGN neutrinos, topological defects

GZK neutrino detection within reach!