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ABSTRACT

This paper briey describes the principle of operation and science goals of the AMANDA high energy neutrino

telescope located at the South Pole, Antarctica. Results from an earlier phase of the telescope, called AMANDA-

B10, demonstrate both reliable operation and the broad astrophysical reach of this device, which includes

searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, Gamma-Ray Bursts and
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di�use sources. The predicted sensitivity and angular resolution of the telescope were con�rmed by studies of

atmospheric muon and neutrino backgrounds. We also report on the status of the analysis from AMANDA-II,

a larger version with far greater capabilities. At this stage of analysis, details of the ice properties and other

systematic uncertainties of the AMANDA-II telescope are under study, but we have made progress toward

critical science objectives. In particular, we present the �rst preliminary ux limits from AMANDA-II on the

search for continuous emission from astrophysical point sources, and report on the search for correlated neutrino

emission from Gamma Ray Bursts detected by BATSE before decommissioning in May 2000. During the next

two years, we expect to exploit the full potential of AMANDA-II with the installation of a new data acquisition

system that records full waveforms from the in-ice optical sensors.

Keywords: AMANDA, neutrino, telescope, GRB, AGN, WIMP, sensitivity, atmospheric neutrinos, ux limits

1. INTRODUCTION

Nature provides precious few information carriers from the deep recesses of space, and it is imperative to develop

techniques to exploit them all. Throughout history, the photon messenger has made vital contributions to the

understanding of the observable Universe. In this paper, we present results from a new generation of telescope

designed to detect a very di�erent kind of information carrier, high energy neutrinos (where E
�
> 1 TeV). The

search for astronomical sources of high energy neutrinos is one of the central missions of the Antarctic Muon

and Neutrino Detector Array (AMANDA), located close to the geographic South Pole in Antarctica.1 It is

possible to identify sources (i.e, astronomy) with neutrinos because they are neutral and stable. The most

powerful detection technique relies on the observation of a muon that is created by charged-current interactions

between a neutrino and atomic nuclei in and around the instrumented volume of the detector. At the energies of

interest, the direction of the muon is highly correlated with the direction of the parent neutrino. The correlation

is usually characterized by the mean angle of deviation, �
��
� 0:65o=(E

�
)0:48, where E

�
is the neutrino energy

in units of 1012 eV. The correlation between the detected muon and neutrino direction is helped by the fact that

the higher energy muons are more readily detected because they emit more Cherenkov photons and they travel

further than lower energy ones. Ideally, the muon angular resolution of the telescope should be comparable to

or less than the angular correlation between muon and neutrino. The muon energy can be estimated from the

relative increase in Cherenkov emission mainly due to pair production and bremsstrahlung.

Ultrahigh energy (UHE) neutrinos with energies in the TeV range and higher may be produced by a variety

of sources. Particle physics exotica like WIMPs and topological defects are expected to produce neutrinos in

their annihilation or decay,2 and models of astrophysical phenomena such as gamma-ray bursts, active galactic

nuclei, supernovae and microquasars4{6 also predict UHE neutrino uxes. Micro-black holes may be produced

in the ice by collisions with extremely high energy neutrinos.3

AMANDA is sensitive to UHE neutrinos produced by these sources and can provide some of the most

stringent tests to date of UHE neutrino production models. More generally, AMANDA and other similar

neutrino telescopes10 open a heretofore unexplored window on the universe in a region of the energy spectrum

bounded between roughly 1012 eV and 1020 eV. In the somewhat narrower energy range between roughly 1014 eV

and 1019 eV, photons are absorbed by intervening matter and starlight, and cosmic-ray protons are insuÆciently

energetic to reach us without experiencing unknown amounts of curvature in intervening magnetic �elds, leaving

neutrinos as the only known particles that can serve as astronomical messengers. Neutrino telescopes are also

sensitive to supernova neutrino bursts at neutrino energies of roughly 107 eV.

While the scienti�c potential of neutrino astronomy is broad, far reaching, and exciting, it is important to

keep expectations realistic by assessing the scienti�c and technical capabilities of current and future neutrino

telescopes. In the next section(s), we describe the detection technique, signatures, e�ective size, and backgrounds

that de�ne the capabilities of AMANDA-II.



2. THE AMANDA DETECTOR

The essential characteristics of a neutrino telescope have been known for more than two decades and most

important features were discussed and speci�ed during a series of workshops devoted to developing the DU-

MAND concept. In fact, more than four decades ago, Markov suggested that the ocean would be a suitable

site for constructing a large neutrino detector based on the detection of Cherenkov light. Halzen and Learned9

introduced a twist on the general scheme by promoting polar ice as suitable medium. Until recently, workable

implementations of these sensible ideas have been thwarted by unusual technical and logistical challenges as-

sociated with the remote deployment of hardware in media that di�er from ordinary puri�ed water in several

important details.

The AMANDA-B10 high energy neutrino detector consists of lattice of 302 optical modules (OMs) on 10

strings. Each OM is comprised of a photomultiplier tube (PMT) with passive electronics housed in a glass

pressure vessel. The OMs are deployed within a cylindrical volume about 120 m in diameter and 500 m in

height at depths between roughly 1500 and 2000 m below the surface of the South Pole ice cap. In this region

the optical properties of the ice are well suited for reconstructing the Cherenkov light pattern emitted by

relativistic charged particles.11 This light is used to reconstruct individual events. An electrical cable provides

high voltage to the PMTs and transmits their signal pulses to the surface electronics. A light di�user ball

connected via �ber optic cable to a laser on the surface is used for calibration purposes. Copious down-going

cosmic ray muons are also used for calibration purposes.

In January 2000, AMANDA-B10 was enlarged to a total of 19 strings with 667 OMs to form AMANDA-

II. This new detector is 200 m in diameter and approximately the same height and depth as AMANDA-B10.

Figure 1 shows a schematic diagram of AMANDA. Planning, design, and construction of the new drill has begun

on IceCube, a kilometer-scale device with 4800 OMs on 80 strings.12

The optical sensors respond to the UV-blue dominated cherenkov radiation emitted by neutrino-induced

muons (see Fig. 2) or neutrino-induced hadronic and electromagnetic cascades. Large detector volumes are

required because the predicted ux of cosmic neutrinos and the known interaction probabilities at the energies

of interest are relatively small. The detection probability, de�ned as the ratio between the range of the muon to

the interaction mean free path of the neutrino, is only 10�6 for neutrinos with an energy of 1 TeV, which is small.

Moreover, the rare signal events must be extracted from a large ux of atmospheric muon background generated

by interactions between cosmic rays and the nuclei in the atmosphere. To minimize this problem, AMANDA

was deployed between 1.5 and 1.9 kilometers underneath the ice surface. The required combination of large

volume, large material overburden, and desire to minimize costs leaves few options other than to construct a

detector within a remote, naturally occurring, transparent medium such as Antarctic ice or water (no excavated

caves or mines are large enough). The formidable technical challenge of remote operation distinguishes high

energy neutrino facilities from existing solar and accelerator-based neutrino detectors.

Given these constraints, AMANDA technologies and system architecture were developed, and now proven by

�ve years of operation, to be reliable, durable, and robust. The technical capabilities of the embedded hardware

were suÆcient to accomplish to the primary science missions. AMANDA was shown to be a functioning

neutrino detector by virtue of its ability to reconstruct upward-going muons induced by atmospheric muon

neutrinos13, 14 and detailed comparison between experimental data and background simulations. It was shown

to be a functioning telescope by comparing the expected pointing accuracy and angular resolution with data

obtained from air shower events that simultaneously trigger the SPASE air shower array and AMANDA.

AMANDA-B10 data has also been used to set competitive limits on WIMPs,15 monopoles,16 extremely

energetic neutrinos,18 UHE �
�
point sources19 and di�use uxes.20 The detector is also sensitive to bursts of

low energy neutrinos from supernovae.21 In the following sections, we highlight some of the previously reported

work, and discuss new analysis of AMANDA-II data.

3. SEARCH FOR UHE �� FROM POINT SOURCES WITH AMANDA-II

We have conducted a general search for continuous emission of muon neutrinos from a spatially localized

direction in the northern sky. Backgrounds are reduced by requiring a statistically signi�cant enhancement in



Figure 1. Left: AMANDA-B10 consists of 302 optical modules in a cylindrical volume 120 m diameter and 500 m in
height. To build AMANDA-II, optical modules were added to bring the count up to 667 OMs in a cylindrical volume
200 m in diameter.

Figure 2. Right: Schematic of the detection method most commonly employed by the AMANDA-II high energy
neutrino telescope. A muon is produced by charged-current interactions initiated by muon neutrinos. The muon produces
UV-blue Cherenkov light that is detected by the embedded optical sensors. Muon trajectory is reconstructed from the
time of arrival and geometric information.

the number of reconstructed upward-going muons within a small bin in solid angle. The bin size is determined

from the predicted angular resolution for muon events. Furthermore, the background for a particular bin can

be calculated from the data by averaging over the data external to that bin in the same declination band.

In contrast to other specialized analyses used by the AMANDA collaboration, this search is more tolerant of

the presence of background, so the signal is optimized on S=
p
B, where S represents the signal and B the

background, rather than on S=B, which emphasizes signal purity.

Data acquired by AMANDA-B10 in 1997 has been analyzed and the results presented.19 That paper

details several checks of the simulation programs, such as using SPASE-AMANDA coincidence data to check

the absolute pointing and angular resolution, and comparing background predictions with data from trigger to

the �nal selection criteria. Systematic uncertainties in simulation input parameters were studied and included

in the �nal results.

With AMANDA-II data taken in 2000, we gain improved sensitivity over the entire visible sky, and most

critically, to events near the horizon since the detector has double the number of PMTs and a larger lever arm

in the horizontal dimension. This is illustrated by the 1250 events in Fig. 3. With the exception of the horizon,

the event distribution is uniform in declination. In order to achieve blindness in this analysis the right ascension

of each event (i.e., its azimuthal angle) was scrambled (at the South Pole this e�ectively scrambles the event

time) before the analysis was �nalized. The goal was to search for a statistically signi�cant excess of events from



a speci�c direction in the sky. The analysis divided the sky into non-overlapping 6Æ � 6Æ angular bins at the

horizon, and varied the azimuthal width of the bin at larger declinations to maintain approximately constant

solid angle. The width of the bin is roughly a factor of 3 larger than the angular resolution of the detector. Four

distinct maps were created to maximize the counts for sources that lie near the edge in a given map. The maps

di�er by shifting the center of each bin by half the width. All sky bins are consistent with random uctuation

of the background events that remain in the sample. Using a customary source spectrum proportional to E�2,

preliminary ux limits for several sources are presented in Table 1.

24h 0h

°-90

°90 1250 events

Mrk 421
Mrk 501

Crab N.

Cas A

SS433

Cyg X3

Figure 3. Sky plot obtained from the AMANDA-II point source analysis. Horizontal coordinates are right ascension
and vertical coordinates are declination. Also shown are the sky coordinates and characteristic search bin for several
potential neutrino sources.

In addition to the preliminary limits extracted from data collected in 2000, Table 1 presents projected

sensitivities of AMANDA-II using all the data currently on tape. The sensitivity is de�ned as the predicted

average 90% C.L. limit from an ensemble of experiments with no signal, and is calculated using background

levels predicted from o�-source data.

Figure 4 summarizes the published experimental muon ux limits as a function of declination. Bands

indicate bin-to-bin variation at a given declination due to statistical uctuation of background events. As seen

from Fig. 4, the sensitivity provided by AMANDA-II is suÆcient to test the straightforward hypothesis that

the brightest TeV gamma-ray sources emit neutrinos with the same ux and energy spectrum proportional to

E�2. One consequence of this hypothesis is that the observed ratio of neutrinos to gamma-rays may be larger

than unity due to photon absorption within the source, or absorption enroute, but cannot be signi�cantly less

than unity because the neutrino cross-section is negligible compared to the photon cross-section. We highlight

Markarian 501 in Fig. 4, which shows the neutrino ux limit from B10 along with the projected sensitivity of

AMANDA-II with data on tape. If current generation neutrino telescopes do not detect neutrinos from these

sources, then the neutrino ux can be can be adjusted through model-speci�c proton and electron eÆciency

factors to make models compatible with observational data. Since model assumptions span a large range, it is

possible that neutrino telescopes with an order of magnitude improvement in sensitivity will observe a positive

signal.

The point source limits and sensitivities are calculated assuming approximately continuous emission over

time. However, many sources exhibit strong temporal variability in the electromagnetic bands. If neutrino

emission is strongly correlated with X-ray or gamma-ray variability5,6 and the variability is well measured by



Table 1. Preliminary limits for selected point sources from 2000 data and estimated sensitivities (in parenthesis) of
AMANDA-II for data now available on tape (�600 live-days). The sensitivity is de�ned as the predicted average limit
from an ensemble of experiments with no signal, and is calculated using background levels predicted from o�-source data.
No systematic uncertainties are included.

Source Declination � (�10�15cm�2s�1) � (�10�8cm�2s�1)

SS433 5.0 6.6 (3.1) 4.2 (2.0)

Crab 22.0 6.9 (1.5) 7.0 (1.6)

Markarian 421 38.2 2.4 (0.8) 2.6 (0.9)

Markarian 501 39.8 1.9 (0.8) 2.2 (0.9)

Cygnus X-3 41.5 2.8 (0.8) 3.3 (0.9)

Cass. A 58.8 2.2 (0.7) 3.2 (1.0)

orbiting or terrestrial telescopes, then sensitivity for a given source should improve with decreasing duration of

the aring episode. The degree of improvement is still under study.

4. ATMOSPHERIC NEUTRINOS WITH AMANDA-II

Without a known astronomical source of high energy neutrinos, detector calibration and consistency checks

of the predicted response must be carried out by alternative methods. Atmospheric neutrinos, being the only

guaranteed source of high energy signal, provide an important tool to assess neutrino sensitivity. A fraction

of the atmospheric muon-neutrinos produced in the northern hemisphere by collisions with cosmic rays travel

through the earth, interact with the underlying earth or the ice near AMANDA, and produce a muon which can

be detected and reconstructed. Using data collected by AMANDA-B10 in 1997, we reconstructed roughly 300

upward-going muons which, as shown in Fig. 5, are in agreement with the predicted angular distribution. This

analysis focuses on obtaining a pure sample of low energy neutrinos to simplify comparison with simulation.

Since this analysis typically produces ineÆciencies near the horizon, it is inappropriate to use for sources with

harder energy spectra (typically, power law spectra proportional to E�2 is targeted).

A preliminary analysis of atmospheric neutrino data taken with AMANDA-II demonstrates a substantial

increase in the capability of the enlarged detector. Compared to the analysis using AMANDA-B10 data, fewer

selection criteria are required to extract a larger and qualitatively cleaner sample of atmospheric neutrino-

induced muons. Figure 6 shows the excellent shape agreement between data and simulation achieved with a

preliminary set of selection criteria applied. With more sophisticated selection criteria we expect to see roughly

twice the number of events shown in the �gure (corresponding to 2-3 times more events in AMANDA-II relative

to AMANDA-B10 for equivalent live-times) and we also anticipate improved angular response close to the

horizon.

5. SEARCH FOR �� FROM DIFFUSE SOURCES WITH AMANDA-II

The search for di�use sources of UHE �
�
{induced muons is similar to the analysis used to detect atmospheric

�
�
{induced muons, as both analyses require a sample of events with low contamination from misreconstructed

downward-going atmospheric muons. Since high-energy muons will deposit more energy in the detector volume

than low-energy muons, the di�use analysis further requires that events have a high channel density, �ch > 3,

where the channel density is de�ned as the number of hit channels per 10 m tracklength. The background in

the signal region is estimated by extrapolating from lower-energy data satisfying �ch < 3.

Using a 20% subsample of the AMANDA-II data from 2000, we detect 6 events satisfying all selection

criteria. Simulations indicate that we would detect 3.0 events from a UHE neutrino ux at the current best

limit,20 assuming a customary E�2 power law spectrum at the source, and 1.9 events from atmospheric

neutrino interactions. (N.B. We use a subsample of the data in order to achieve blindness in this analysis.) The

distributions of �ch for data, simulated signal and simulated background are shown in Fig. 7.
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Figure 4. Comparison of current ux limits from AMANDA-B10, SuperKamiokande,17 and MACRO,33 and projected
ux sensitivity for 600 live-days of AMANDA-II. For reference, we indicate the neutrino ux from Markarian 501 assuming
the neutrino ux and energy spectrum is identical to the observed high-state gamma ray ux.

The predicted average limit from an ensemble of experiments with no signal, or sensitivity, is roughly

1:3 � 10�6 GeV cm�2s�1sr�1, and the preliminary limit is less than roughly 10�6 GeV cm�2s�1sr�1. This is

about the same as the limit obtained with the full sample of AMANDA-B10 data from 1997.

The discovery potential of AMANDA-II (and other current generation neutrino telescopes) is especially high

for di�use signals. The projected sensitivity of AMANDA-II in Fig. 8 indicates that much of the available

parameter space is probed. The space is bounded at low energies by the di�use atmospheric neutrino and

muon backgrounds. The background oor on this �gure depends by the rather uncertain prompt muon and

neutrino ux from charm production in the atmosphere. At higher energies, neutrino absorption by the earth

implies that di�use signals originate predominantly from slightly above the horizon. The AMANDA telescope

can survey the extremely high energy (EHE) region of the neutrino energy spectrum using techniques that

extract bright horizontal events from the less energetic atmospheric background.18 AMANDA can provide

critical input to more sensitive techniques based on radio,39 uorescence,40 air shower arrays,41 and possibly

acoustic42 signatures from the cascades initiated by such highly energetic interactions. At this early stage

of di�use EHE analysis, the projected sensitivity contains substantial (perhaps factor of 2) uncertainty but

AMANDA-II is poised to probe model predictions that lie above the MPR bound8 and those in the vicinity

of the W&B bound.7 The sensitivity may be better than shown once the analysis techniques incorporate the

waveform information that will become available during the next few years.
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Figure 5. Left:Number of upward-going muon events in AMANDA-B10 data from the year 1997, as a function of
zenith angle (cos � = �1:0 is vertically up in the detector). The data are shown as dots and the Monte Carlo as boxes.
The simulation was performed with the neutrino oscillation parameters as indicated. The predicted signal eÆciency is
roughly 4% and the background level is roughly 10%, with both numbers improving near the vertical and degrading near
the horizon. Simulations indicate that these events have an energy range given roughly by 60 GeV < E� < 300 GeV.

Figure 6. Right:Number of upward-going muon events in AMANDA-II data from the year 2000 as a function of zenith
angle, using a preliminary set of selection criteria. There are a total of 527 events in the data (solid line), and 519 events
predicted by the atmospheric neutrino Monte Carlo (dashed line). Simulations indicate that these events have an energy
range given roughly by 100 GeV < E� < 1 TeV. With more sophisticated selection criteria we expect improved response
near the horizon.

6. SEARCH FOR �� FROM GRBS WITH AMANDA-B10 AND -II

The search for UHE �
�
{induced muons from gamma-ray bursts (GRBs) utilizes temporal and directional in-

formation from satellite-based observations of GRB photons to obtain very large e�ective area (the per-burst

AMANDA-II analysis typically reaches 50% of the maximum area determined by the hardware trigger con-

ditions). Since AMANDA archives all of the data it collects, the search for correlated high energy neutrino

emission uses the archival GRB database from BATSE. The analysis reported here assumes that the neutrino

emission occurs over the same time interval that contains 90% of the gamma-ray photons in the GRB (T90).

We expand the window by a few seconds around T90 to account for possible early emission as predicted by

some models and to reduce the �ne-tuning on the short burst population. The relatively large detection area

is a consequence of the modest background rejection, which requires approximately 10�4 for per-burst analysis

and � 2 � 10�5 for composite searches. This is contrasted with the approximately 10�6 rejection requirement

for point source analysis and � 10�8 for the di�use source analysis. Assuming the predicted spectrum,36 we

search for muon neutrinos in the energy range of 10{500 TeV and use o�-source and o�-time data to estimate

background and to achieve blindness in the analysis.

Models of high energy neutrino emission from GRBs tend to focus on average properties, but several recent

papers have asserted that rare, favorable uctuations in the burst characteristics for one or two GRBs may

dominate the neutrino ux. This suggests a two-fold search strategy: one designed to maximize the individual

(or per-burst) sensitivity and another designed to maximize the composite sensitivity for all measured GRB. In

this report, we focus on the simpler per-burst search strategy for the AMANDA-II analysis and note that the

results from the composite search using the 1997 data were reported elsewhere.37
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broken curve of high energy background (labeled "Charm?") extending from the atmospheric neutrino curve estimates
the additional contribution from prompt muons and neutrinos due to charm decay.

The per-burst analysis of 2000 data from AMANDA-II looks for enhancements in the rate of upward-going

muons over short periods from a �xed direction, with relatively loose background rejection requirements at

the 10�4 level. Event rate stability over short periods is therefore an important measure of how e�ective this

analysis can be. Figure 9 shows the count rate per 10 s bin in a time window of roughly �1 hour around

a particular GRB. The agreement with a Gaussian distribution shows that the detector did not experience

instrumental e�ects which could mimic a GRB. Plots for all the other GRBs in the sample exhibit the same

well-understood behavior.

All AMANDA-II data within the 2-hour window surrounding the GRB event were processed with full-

iterative reconstruction of cleaned data. Cleaning procedures remove instrumental artifacts such as cross-talk

signals. A very simple selection procedure achieved the requisite background rejection: the reconstructed

declination of the AMANDA-II event had to be larger than -10 degrees and the angular direction had to be

within 22 degrees of the GRB direction obtained fromBATSE. The angular dependence of the background events

and detector sensitivity is shown in Fig. 10. At the �nal cut level, we include the e�ect of neutrino absorption

by the earth for the assumed spectrum with a spectral break at 500 TeV. Since the angular dependence for

both signal and background is similar, the analysis does not bene�t from the additional complication of angle

dependent cuts. A total of 58 BATSE bursts were observed between February and May of 2000 (the sample

includes triggered and non-triggered bursts to increase statistics). As shown in Fig. 11, the per-burst analysis

reaches an e�ective area of 50,000 m2 for E
�
= 100 TeV, approximately 50% of the e�ective area at trigger level.

From Fig. 12 we conclude that search provides no evidence for correlated emission of high energy neutrinos from



Figure 9. Left:The event count per 10 s period, demonstrating the good stability and gaussian uctuation of the
AMANDA-II o�-time event rate. Some selection criteria have been applied.

Figure 10. Right:Signal and background counts for the GRB per-burst analysis as a function of declination. Background
counts for various stages of the analysis (L1 = level 1, L2= level 2, etc.) are determined for a time interval of 100 seconds,
while the signal from the �nal stage of the analysis (L2+spaceangle)is arbitrarily scaled.

any GRB burst in the BATSE data sample from 2000. The histogram agrees with the line that was computed

assuming random uctuation of o�-time background events.

In the AMANDA data spanning the years 1997{2000, we anticipate having a sample of roughly 500 GRBs to

search through. The longer term prospects look promising as well. New satellites have either started operation

in 2002 or planned for launch during the next half decade. They will enhance the GRB-�nding capabilities of

the GRB Coordinates Network.38 Within the same time frame, the GRB sensitivity of AMANDA-II is planned

to be augmented by the �rst strings of IceCube.12 As few as 16 additional strings can achieve an e�ective area

of 0.5 km2 for neutrino energy in the theoretically interesting region around 100 TeV, although the potential of

the con�guration cannot match the full IceCube array. Figure 13 shows the volume-averaged e�ective area as a

function of the muon energy at production. In this simulation, the strings are separated by 125m and roughly

centered on AMANDA-II. We point out that the con�guration should achieve comparable detection area for

generic searches for transient or episodic emission.

7. SEARCH FOR DIFFUSE FLUX USING CASCADES IN AMANDA-B10 AND -II

In addition to methods based on elongated tracks, we have performed a full-reconstruction search for the

Cherenkov light patterns resulting from electromagnetic or hadronic cascades induced by a di�use ux of high-

energy extraterrestrial neutrinos.22{25 Demonstrating �-induced cascade sensitivity is an important step for

neutrino astronomy because the cascade channel probes all neutrino avors, whereas the muon channel is

primarily sensitive to �
�
. Compared to muons, cascades provide more accurate energy measurement and better

separation from background, but they su�er from far worse angular resolution and reduced e�ective volume. It

is more straightforward to calibrate the cascade response of AMANDA through use of, for example, in-situ light

sources. As with muons, cascades become increasingly easier to identify and reconstruct as detector volumes

get larger.



log(Eµ
gen/GeV)

A
ef

f 
(k

m
2 )

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

3 3.5 4 4.5 5 5.5 6 6.5 7

10-2

10-1

100

0 0.5 1 1.5 2

O
cc

ur
re

nc
e 

F
ra

ct
io

n

-log(P)

Figure 11. Left:The volume-averaged e�ective area as a function of the muon energy at production (typically a factor
of 2 less than the incoming neutrino energy for charged current interactions). The e�ective area for the GRB analysis
shown for two ice models and also averaged over declination. Statistical uncertainty is about 15% in this preliminary
study.

Figure 12. Right: Histogram of chance probabilities (P) to obtain experimentally observed counts during the T90

window from a random uctuation of expected background. The solid line was computed from o�-time data of the
GRBs by randomly redistributing the time stamps. The time-shu�ing procedure was repeated 100 times and the results
averaged.

The electron neutrino produces cascades via the charged current interaction and all neutrino avors produce

cascades via the neutral current interaction. Cascade-like events are also produced in charged current �
�

interactions. The successful reconstruction of pulsed laser data and the reconstruction of isolated catastrophic

muon energy losses, described in,25 demonstrate that the detector is sensitive to high energy cascades.

Our results together with other limits on the ux of di�use neutrinos are shown in Fig. 14. Since recent

results from other low energy neutrino experiments26{29 indicate that high-energy extragalactic neutrinos will

have a neutrino avor ux ratio of 1:1:1 upon detection, in this �gure we scale limits derived under di�erent

assumptions accordingly. For example, compare a limit on the ux of �
e
+�

�
+�

�
+�

e
+�

�
+�

�
, derived under

the assumption of a ratio of 1:1:1, to a limit on just the ux of �
�
+ �

�
, the latter must be degraded by a factor

of three. (N.B.: We assume that �:�::1:1, and we take into account the di�erent cross sections for � and �.)

Data acquired by AMANDA-II is currently under study and, as with the analysis of atmospheric neutrinos

and GRBs, preliminary results from that work clearly demonstrate the enhanced power of the larger AMANDA-

II detector. Angular acceptance improves to nearly 4�, backgrounds are much easier to reject, and energy

acceptance improves by a factor of three to E
�
� 1 PeV.

8. LOOKING AHEAD

As the analysis from AMANDA-II data in year 2000 is re�ned for publication, the focus will start to shift to

data acquired during 2001 and 2002, with a commensurate factor of three increase in statistical precision. We

are also currently analyzing the data from AMANDA-B10 acquired in 1998 and 1999. During the next two polar

campaigns in Antarctica, the data acquisition system of AMANDA-II will be upgraded to handle much higher

event rates and record the full signal waveforms from the optical modules. The added information will help to
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Figure 13. Left:The volume-averaged e�ective area as a function of the muon energy at production for AMANDA-II
and 16 additional strings. The e�ective area is averaged over declination. Solid lines correspond to hardware trigger
with no background rejection. Dashed lines include background rejection to 10�5. Note that the trigger conditions for
AMANDA-II in this study do not match the trigger conditions of the detector in 2000.

Figure 14. Right:The limits on the cascade-producing neutrino ux, summed over the three active avors, presented for
AMANDA and other experiments, with multiplicative factors applied as indicated to permit comparison of limits derived
with di�erent assumed neutrino uxes at the detector: Baikal (�e)

30 (at theW� resonance); Baikal NT96 (��+��+�e)
31;

Frejus (�� + ��)
32; MACRO (��+ ��).

33 Baikal NT96+NT200 (�l+ �l)
30, 34; AMANDA B-10 (��+ ��)

20; Also shown
are the predicted horizontal and vertical �e and �� atmospheric uxes.35

improve the energy response and angular resolution, especially for neutrinos with energies above PeV. Then, as

the analysis programs are modi�ed to incorporate the new detector capabilities, AMANDA-II will reach its full

potential. Beyond that, as few as 16 additional IceCube strings would dramatically boost the sensitivity of the

system in several key physics goals and insure the continuation of state-of-the-art science output.
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